
MATH2050C Selected Solutions to Assignment 3

Deadline: Jan 31, 2018.

Hand in: Section 2.4 no 11, Section 2.5 no 14, Supp. Ex no 1.

Section 2.4 no. 8, 9, 10, 11.

(11) Solution. By definition, for each y,

g(y) = inf
x
h(x, y)

≤ h(x, y) , ∀x,
≤ sup

z
h(x, z), ∀x,

= f(x) , ∀x.

Taking infimum over all x, g(y) ≤ infx f(x) . Now, taking supremum over y to get supy g(y) ≤
infx f(x).

Section 2.5 no. 1, 2, 7, 8, 9, 14.

(14) Solution. WLOG assume a1 6= b1 and n ≥ 2. Then

1

10
≤ |a1 − b1|

10

≤ |b2 − a2|
102

+ · · ·+ |bn − an|
10n

≤ 9

102

(
1 +

1

10
+ · · ·+ 1

10n−2

)
=

1

10

(
1− 1

10n−1

)
which is impossible.

Supplementary Exercises

1. Show that for every natural number n ≥ 2 and every positive real number a, there is a
positive real number b satisfying bn = a. Suggestion: Modify the proof of n = a = 2 in
the text book. Recall the binomial formula

(x+ y)n = xn +
n∑

k=1

(nk)xn−kyk .

Solution. Let S = {x > 0 : xn < a}. Claim S is bounded from above: Pick some
N > a by Archimedean property, then xn < a implies xn < N ≤ Nn, so Nn − xn > 0.
By factorization (Nn−1 + Nn−2x + · · · + xn−1)(N − x) > 0. Since the first factor is
positive, N − x > 0, that is, N is an upper bound of S. By order-completeness, b = supS
exists. Next we show that bn < a is impossible. Assume that it is true and we draw a
contradiction. Letting 1 > ε > 0 be small, we have

(b+ ε)n = bn +
n∑

k=1

(nk)bn−kεk = bn + ε
n∑

k=1

(nk)bn−kεk−1 .
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Using
n∑

k=1

(nk)bn−kεk−1 ≤
n∑

k=1

(nk)bn−k ≡ c ,

(b + ε)n ≤ bn + cε . If we choose ε satisfies ε < (a − bn)/c, then (b + ε)n < bn + cε < a,
contradicting the fact that b is the supremum of S. A similar argument shows that bn > a
is also impossible, thus leaves the only case bn = a.
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3.1 Cardinality of Sets

For a finite non-empty set A, we define its power (cardinal number) to be the number of its
elements. The power of an infinite set is not so easy to defined. First, we call two sets A and B
have the same power if there is a bijective mapping. We call the power of A is less than or equal
to B if there is an injective mapping from A into B. The power of A is less than the power of
B if |A| ≤ |B| but there is no bijection between A and B. A nontrivial result is the following
theorem.

Schröder-Bernstein Theorem If the power of A is less than or equal to that of B and vice
versa, then there is a bijective map between A and B.

The equivalence class of all sets bijective to each other is called the power (or cardinal number)
of the set. We will denote the power of a set by |A|. With these notations, Schroder-Bernstein
theorem can be expressed as: |A| ≤ |B| and |B| ≤ |A| imply |A| = |B|.
Known facts:

• When A is finite, |A| is the number of elements in A.

• For every infinite set A, |N| ≤ |A|. In other words, a countable set has the smallest infinity.

• Z,Q, etc, are all countable, that is, their powers are equal to |N|.

• When A is finite, |P(A)| = 2|A| where P(A) denotes the power set of A.

• For any set A, |A| < |P(A)|.

• |N| < |R|.

We only give the proof concerning the power set. The last item is proved by the nested interval
property in Text, and the others are elementary and left to you.

As |A| < |P(A)| = 2|A| for any finite A, the power set always has more elements then the set
itself when the set is finite. In general, assume on the contrary that there is bijection map Ψ
from A to P(A). We let

A1 = {x ∈ A : x ∈ Ψ(x)} , A2 = {x ∈ A : x not in Ψ(x)} ,

so A is the disjoint union of A1 and A2. The set A2 is nonempty, for, letting a = Ψ−1(φ) ∈
A,Ψ(a) ∈ φ means a does not belong to Ψ(a), that is, a ∈ A2. Now, let z = Ψ−1(A2). Then
either z belongs to A2 or A1. If z ∈ A2, then z does not belong to Ψ(z) = A2, impossible. On
the other hand, if z ∈ A1, then z ∈ Ψ(z) = A2, again this is impossible. We conclude that there
cannot have any bijective map between A and P(A). As the map a 7→ {a} is injective from A
to P(A), we conclude |A| < |P(A)|.

3.2 Decimal Representation of Real Numbers

We will show that every positive real number x can be represented by m.m2m2m3 · · · where
m ∈ N ∪ {0},mk ∈ D ≡ {0, 1, 2, · · · , 9}. More precisely,

Theorem For each positive real number x, there existm ∈ N∪{0}, mk ∈ D ≡ {0, 1, 2, · · · , 9}, k ≥
1, such that x is the supremum of the sequence{

m,m+
m1

10
, m+

m1

10
+
m2

102
, m+

m1

10
+
m2

102
+
m3

103
, · · · ,

}
.
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Proof: We can find a unique m ≥ 0 such that m ≤ x < m+ 1. Then

0 ≤ x−m < 1, (0 ≤ x−m < 1)

0 ≤ 10(x−m) < 10,

∃m1 ∈ D,m1 ≤ 10(x−m) < m1 + 1,

0 ≤ 10(x−m)−m1 < 1, (0 ≤ x−m− m1

10
<

1

10
)

0 ≤ 10[10(x−m)−m1] < 10,

∃m2 ∈ D,m2 ≤ 10[10(x−m)−m1] < m2 + 1

0 ≤ 10[10(x−m)−m1]−m2 < 1, (0 ≤ x−m− m1

10
− m2

102
<

1

102
) .

Keep doing this, we get mk ∈ D, k ≥ 1, satisfying

0 ≤ x−
(
m+

m1

10
+
m2

102
+ · · ·+ mk

10k

)
<

1

10k
,

and the conclusion follows easily. The proof is completed.

Introduce the notation
x = m.m1m2m3 · · · ,

and call the right hand side the decimal representation of x. Any number written in the form
m.m1m2m3 · · · is called a decimal. You should always understand it stands for the supremum
of an increasing sequence of rational numbers{

m,m+
m1

10
, m+

m1

10
+
m2

102
, m+

m1

10
+
m2

102
+
m3

103
, · · · ,

}
.

The decimal representation has the following properties:

• The decimal representations of two different numbers are different.

• A decimal m.m1m2m3 · · · satisfying mk = 9 for all k ≥ k0 for some k0 does not appear in
the construction above. For instance, 0.999 · · · whose supremum is 1, but taking x = 1 in
the proof gives 1.000 · · · , not 0.999 · · · . All other decimals come from some x > 0 though.

• Any decimal m.m1m2m3 · · · ,m ≥ 0,mk ∈ D, represents a rational number if and only if
it is a repeated decimal.

• Replacing 10 by other natural number leads to other representations. It is called binary
representation when 2 is used.

Prove them or google for more if you like.

3.3 The Real Line
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We draw a line and put an arrow at the right end. Then fix a point called 0 and another called
1. Next mark 2, 3, 4, · · · to right of 0 so that the lengths of the segment connecting n and n+ 1
are equal. Similarly, mark −1,−2,−3, · · · , to the left of 0. In this way the real line is formed.

We claim that points on the real line are in one-to-one correspondence with the set of real
numbers. We have done this already for all integers. For a rational number of the form p/q
where p, q have no common factor greater than one and 0 < p < q, we divide the segment
connecting 0 and 1 into q many segments of equal length. Then the left endpoint of the p-th
segment is p/q. When p/q > 1, write it as n + p′/q where p′ < q and we move things to the
segment connecting n and n + 1. Similarly we treat the negative case. Now, each irrational
number is the supremum of a sequence of rational numbers. It is intuitively apparent that
such sequence tends to a point on the real line and this point represents this irrational number.
Conversely, it is clear that every point on the real line corresponds to a real number, thus
accounting for the saying that the real line has no holes.


